

series

890-2

2-Stage Servovalve Rated flows up to 230 l/m

Features

Maximum operating pressure 350 bar ISO 10372-06-05-0-92 mounting pattern Internal pilot supply (4 port)
Suitable for 3-way or 4-way applications
Low hysteresis & zero point drift
High spool drive forces
Spool in bushing design
Dry torque motor with mechanical feedback
Long life Sapphire Technology

Star Hydraulics Limited Severn Drive Tewkesbury Business Park Tewkesbury Gloucestershire GL20 8SF England (UK)

www.star-hydraulics.co.uk

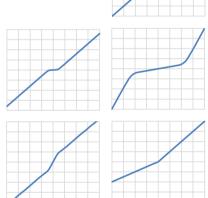
ST-890-2-2016.1-En

Sapphire ball in slot design

- Incorporated into Star designs since 1988
- Many billions of cycles per service life
- Increased spool life due to spool rotation
- Ultra low coefficient of friction sapphire to steel
- Feedback mechanism unhindered by spool rotation
- Extended warranties available

Safety

- Flame proof
- Intrinsic safety
- Class, Div & Zone coverage
- Mechanical failsafe
 - Double & triple coil redundancy



- Independant audit process is our commitment on quality
- Focus on customer needs and expectations
- Delivery schedules on time
- Continual improvements on products and services
- Maintaining design and manufacturing integrity

Custom spool lap & bushing port geometries

- Zero overlap
- Overlap (closed center) underlap (open center)
- Dual gain
- Asymmetric gain

Sapphire flow

- Ensuring first stage stability
- Precisely matched flow properties
- Long life in extreme environments

- Compact servo designs
- Special interfaces
- Modular components

Sealing materials

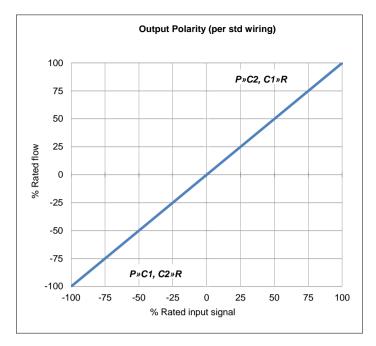
- Fluorocarbon (Viton)
- Ethylene-Propylene
- Fluorosilicone

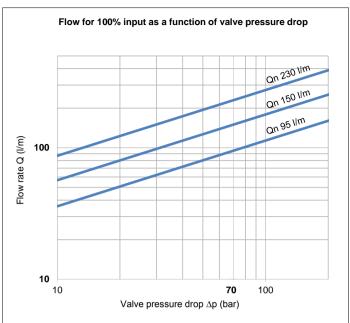
- MIL-C-5015
- MIL-DTL-38999
- Conduit style male/female
- Hermetic

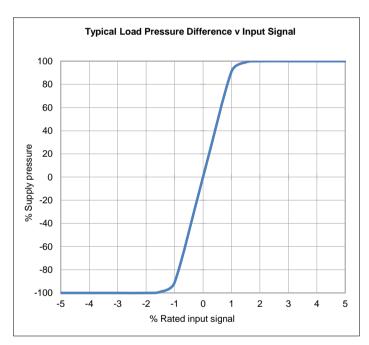
Hydraulic

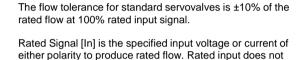
Nominal flow ratings [±10%]	at 70 bar ∆p	95, 150, 230 l/m	95, 150, 230 l/m		
Operating pressure (max)	Ports	P, C1, C2	R		
Seal material	NBR, FPM	400 bar	315 bar		
	EPDM	280 bar	210 bar		
Fluid viscosity range (recommended)		10 to 100 mm ² /s	(cSt)		
Fluid type		Mineral oil to ISO 11158, DIN 51524 or equivalent			
		MIL-H-5606			
		Skydrol			
		Kerosene			
		Water glycols	Water glycols		
		others on reques	st		
Filter rating (recommended)	Pressure line	Beta 10 = 200 (1	Beta 10 = 200 (10 μm abs), non by-pass & indicator		
	Off-line	Beta 2 = 1000 (2	2 μm abs)		
Fluid cleanliness	ISO 4406: 1999				
	minimum	16/ 14/ 11	16/ 14/ 11		
	recommended	15/ 13/ 10	15/ 13/ 10		

Operational parameters

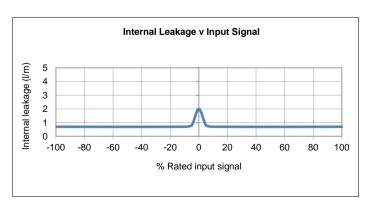

Hysteresis		≤ 4.0% without dither
Threshold		≤ 1.5% without dither
Null shift	ΔT 40°C	≤ 3.0%
Internal leakage	140 bar supply (0.5% overlap)	
	95 l/m	≤ 3.0 l/m
	150, 230 l/m	≤ 5.0 l/m
Load pressure difference	1% input	≥ 30% of supply pressure can be as high as 100%
Response time	0-100% rated spool stroke	
	95, 150 l/m	18 ms
	230 l/m	36 ms
Mounting pattern		ISO 10372-06-05-0-92 without X port
Mounting position		Any, fixed or movable (1)
Weight	std unit	8.5 kg
	additional filter housing	9.9 kg
Design protection	EN 60529	IP 65
Shipping protection		Sealed base plate
Vibration		30 g all axis, 5 Hz to 2,000 Hz
Shock		30 g all axis
Seal material options		NBR, FPM, EPDM
Temperature range		-30 to 135 °C


⁽¹⁾ Depending on valve orientation the main stage spool may drop when pilot supply pressure is switched off leading to unwated startup bump. If so then apply pressure to the first stage pilot via the X port prior to applying pressure at the main stage.

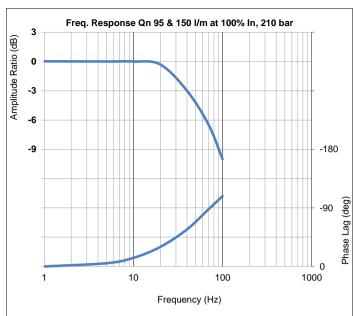

Electrical

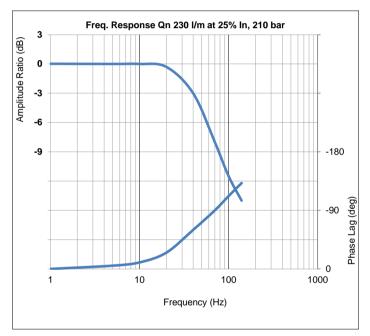

Rated input ± (mA)	single (differential)	8	15	30	40	100	200	
Other coil rates available	series	4	7.5	15	20	50	100	
	parallel	8	15	30	40	100	200	
Coil resistance (Ω)	per coil	1000	200	300	80	28	22	
Power (W)	single	0.064	0.045	0.27	0.128	0.280	0.88	
	series	0.032	0.023	0.135	0.064	0.140	0.440	
	parallel	0.032	0.023	0.135	0.064	0.140	0.440	
Connector pin out identification		A B C D						
Polarity P»C2, C1»R	single	A +, B - o	A +, B - or C +, D -					
	series	A +, D -, I	A +, D -, B & C linked					
	parallel	A & C link	A & C linked +, B & D linked					
Valve connector type	MIL-C-5015	MS3102E	MS3102E-14S-2P mates with MS3106F-14S-2S					
		Consult fa	Consult factory for more options					
Standard connector orientation		C2 port	C2 port					
	also available over	C1 port; p	C1 port; please advise when ordering					

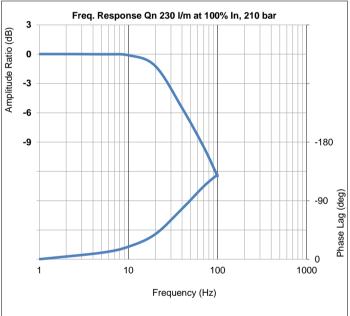
¹⁵ mA 200 ohm coil rate not available with rated flow of 230 l/m.

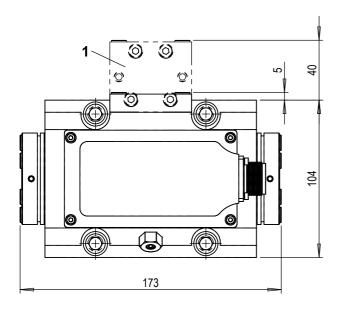


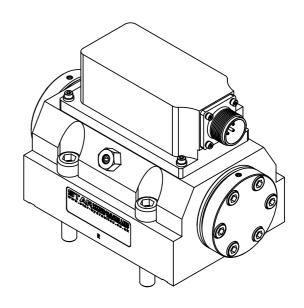
include null bias values.

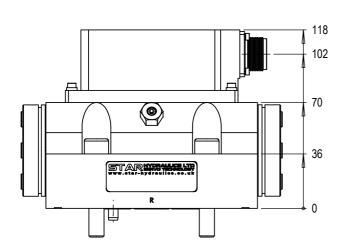

Rated flow corresponds to the flow at rated input at 10 bar or 70 bar, with no load, therefore in 4-way valves there will be a pressure drop of 5 bar or 35 bar respectively across each

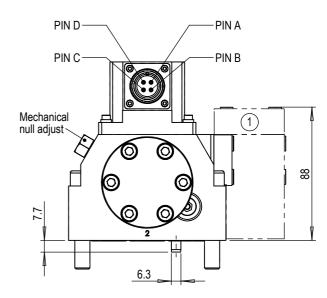

Load pressure difference versus input signal indicates typical differential pressure gain between ports C1 (A) and C2 (B) for standard lap spools. Negative and positive overlap change this characteristic significantly.


Internal leakage comprises of tare first stage and laminar leakage between spool and sleeve. With critical lap conditions in 4-way designs the leakage peaks through the null region.









Mounting screws	Skt head cap screws M10 x 55 10.9 ISO 4762
Null adjust (Mechanical)	- 3.0 hex skt & 13 A/F lock nut - slacken lock nut (ccw) half-turn with 13 A/F ring spanner - insert 3.0 hex key into socket and rotate to obtain required null / offset value - hold hexagon key in desired position then tighten lock nut to 3 Nm
Porting details	P, C1, C2, R ports \emptyset 15.8, \square \emptyset 23.8 $\overline{\vee}$ 1.40 on 50.8 P.C.D.
Interface seals	Ports P, C1, C2, R - ID 20.35 x Ø 1.78 O-Ring
(1) Optional filter housing	Replacement cartridge PN: SRS1479

P C1 C2 R X F1 F2 F3 F4 size Φ15 Φ15 Φ15 - M10 M10 M10 M10 x 36.50 11.10 61.93 36.50 - 0 73 73 0	G
	J
x 36.50 11.10 61.93 36.50 - 0 73 73 0	⊅8 ⊽ 9
	11.10
y 17.38 42.80 42.80 68.23 - 0 0 85.60 85.60	23.70

Surface flat within 0.01 / 100 : finish better than 0.8 µm

	92 min.
	0
4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	G (+)
104 min.	$\begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$
104	C1 C1
	The second secon
1	F4